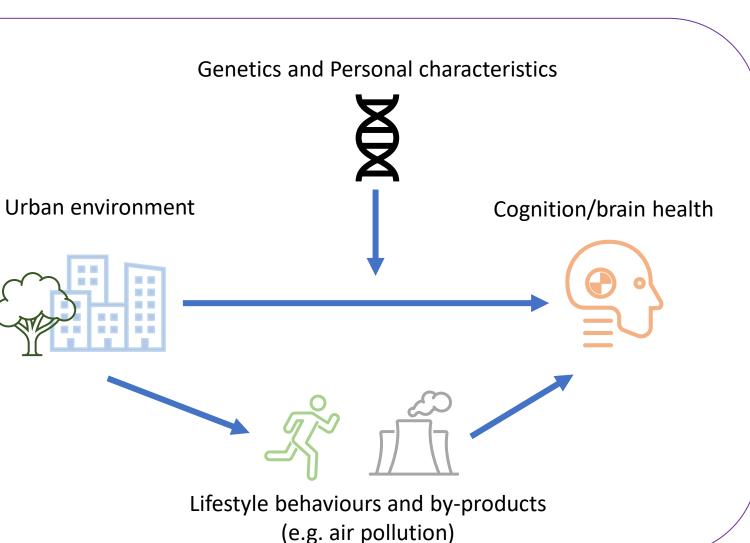
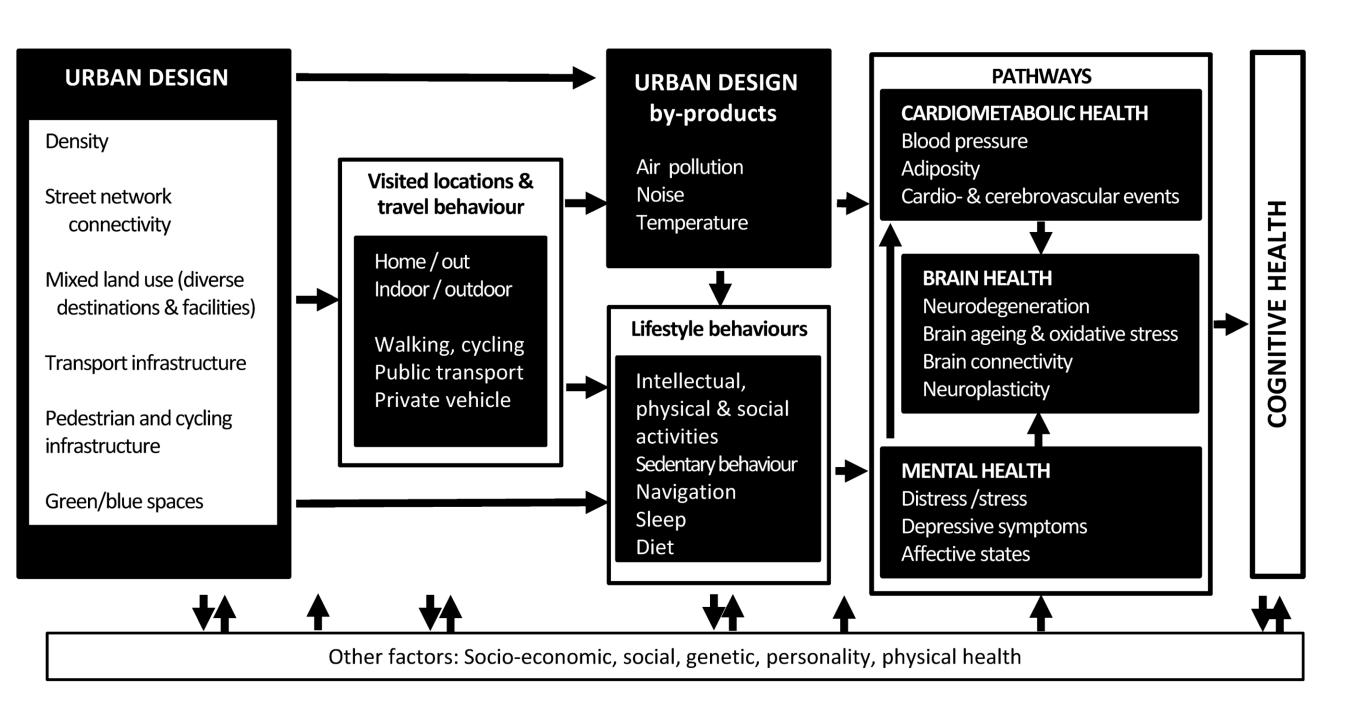

International Mind, Activities and Urban Places (iMAP) study: methods of a cohort study on environmental and lifestyle

influences on brain and cognitive health

GOOD HEALTH


BACKGROUND


- ☐ As we age the likelihood of experiencing cognitive decline the decline in our ability to think, learn, reason, and remember – increases. This can result in substantial disability for the individual, increased healthcare costs and can negatively affect our quality of life.
- Several lifestyle and environmental factors, (physical and social activity, pollution, etc.) can influence brain and cognitive health in mid- to late life
- ☐ The influence of aspects of the **built and natural environment** on **cognitive health** can be direct or act via by-products (e.g., air pollution or noise) and lifestyle behaviors influenced by said environment.

RESEARCH QUESTION

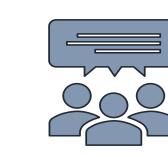
☐ How and to what extent, a wide range of features of the urban environment and their by-products and lifestyle behaviours, impact cognitive health in mid-to older aged adults.

□ Does an individual's **genetics** impact the **relationship** between the urban environment and cognition

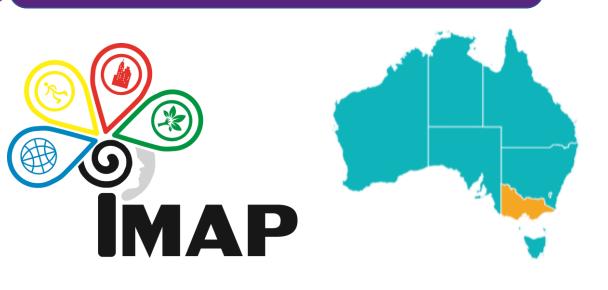
Ecological model of cognitive health. Highlights the factors and by-products that are influenced by urban environments and that may affect cognitive health.

DISTRIBUTION OF FINDINGS

- ☐ Dissemination of study methods and findings will be designed to impact both science and policy
- Results will be communicated to **practitioners** and **policy** makers, targeting especially health, urban design/planning, housing and transport sectors.
- ☐ Delivery modes:


Website

Policy Briefs


Conference Presentations

Press Releases

Consultations

METHODS

	Melbourne (Australia)	Hong Kong (China)	Barcelona (Spain)
Population density in urban areas (people/km²)	3,200	25,900	16,000
Street intersection density (intersections/km²)	70	55	223
Land use mix (entropy index; range: 0–1)	0.15	0.50	0.19
Mean annual concentration of PM _{2.5} (μg/m ³)	8	63	14
Mean annual concentration of nitrogen dioxide (μg/m³)	16	95	50
Prevalence of health-enhancing physical activity	55%	85%	77%
Prevalence of dementia	9.0%	3.3%	2.4%

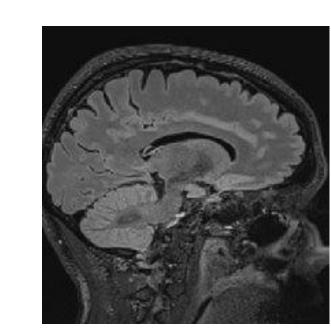
- ☐ 600 participants recruited from each city, aged between 50-79yrs (1800 in total)
- ☐ Each of these environments comes with different urban living exposures allows results to guide national and international policy changes
- ☐ Baseline assessment (2019/2022) followed by follow-up assessment 2yrs later (2021/2024) to examine changes in brain and cognitive health

Measures

Exposures

- **Environmental characteristics** of visited locations including built and natural environment (e.g., street connectivity, green/blue space, transport) and their by-products (e.g., air pollution (NO₂ and PM_{2.5}) and noise)
- □ Objective measurements using Geographical Information Systems and Microscale Audit of Pedestrian Streetscapes (MAPS) Global
- □ Self reported measures of visited locations- using Visualization and Evaluation of Route Itineraries, Travel destinations and Activity Spaces (VERITAS), an interactive map-based questionnaire developed for iMAP

Moderators and Mediators


- Lifestyle behaviours (e.g. physical and social behaviours)
- ☐ Participant characteristics (e.g. sociodemographics, chronic health conditions)
- ☐Genetics APOE genotype
 - ☐ APOE gene is a risk factor for dementia

7- day assessment of lifestyle activities: physical activity, sedentary and mobility behaviours, sleep (Wearing equipment)

Outcomes

- □ Cognitive function Tests evaluating cognitive functions such as memory, speed, attention and language will be used
- ☐ Brain health MRI scans will examine the brain for any detrimental structural changes and assess brain health

POTENTIAL IMPACT

- ☐ iMAP study is the **first of its kind** to examine the effects of urban environments on the brain and cognitive health across different geographical locations
- **□** 3 diverse cities = study maximizes environmental variability = more accurate estimation of the relationship between the urban environment, lifestyle behaviors, and cognitive health
- ☐ Wide variability in exposures = results could be generalised across countries
- □ Data can be used to ensure that **urban living** is better orientated towards improving and maintaining an individual's cognitive health and wellbeing to help minimise our chances of experiencing cognitive decline

⁸ Centre for Urban Transitions, Swinburne University of Technology, Hawthorn, Victoria, Australia. ⁹ Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA. ¹⁰ Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia.

¹⁴ Neuroscience Research Australia, Randwick, New South Wales, Australia.